NET/GATE Exam's Previous Year Questions

Volume of EDTA \rightarrow

	(c) 14.4 mS $m^2 mol^{-1}$		(d) 11.0 mS $m^2 mol^{-1}$				
19.							
		-	-	n of Pb(II) gives a limiting current			
	•	tration of Pb(II) in the un		[NET June 2014]			
	(a) 1.355 mM	(b) 1.408 mN					
	(c) 1.468 mM	(d) 1.500 mN	1				
20.	Given;			[NET June 2014]			
		\rightarrow Fe(s) + 2OH ⁻ (aq); E	$^{\circ} = -0.877 V$				
	B. $Al^{3+}(aq) + 3e^{-} \rightarrow$	$Al(s); E^0 = -1.66V$					
	C. AgBr(aq) $e^- \rightarrow A$	$Ag(s) + Br^{-}(aq); E^{0} = 0.0^{\circ}$	71V				
	The overall reaction	for the cells in the directi	on of spontaneous change w	ould be			
	(a) Cell with A and	B : Fe reduced					
	Cell with A and	C : Fe reduced					
	(b) Cell with A and	B : Fe reduced					
	Cell with A and	C : Fe oxidized					
	(c) Cell with A and	B : Fe oxidized					
	Cell with A and	C : Fe oxidized					
	(d) Cell with A and	B : Fe oxidized					
	Cell with A and	C : Fe reduced					
21.	Solutions of three el	ectrolytes have the same	ionic strength and different	t dielectric constants as 4, 25 and			
	81. The corresponding	g elative magnitude of D	ebye Huckel screening, leng	ths of the three solutions are			
	(a) 4, 25 and 81	(b) 2	,5 and 9	[NET June 2014]			
	(c) 1/2, 1/5 and 1/9	(d) 1	,1 and 1				
22.	Dominant contributi	on to the escaping tend	ency of a charged particle	with uniform concentration in a			
	phase, depends on			[NET June 2015]			
	(a) chemical potentia	l of the phase	(b) electric poten	tial of the phase			
	(c) thermal energy of	the phase	(d) gravitational	potential of that phase			
23.	The temperature dep	endence of an electrocher	nical cell potential is,	[NET June 2015]			
	ΔG	ΔH	ΔS	ΔS			
	(a) $\frac{1}{nFT}$	(b) $\frac{\Delta T}{nF}$	(c) $\frac{\Delta S}{nF}$ (c)	(d) $\frac{\Delta S}{nFT}$			
24				111 1			
24.			a strong alkalı (MOH) show	vs linear fall of conductance up to			
	neutralization point b			[NET June 2015]			
	(a) Formation of wat						
	(b) increase in alkali		·) (+				
		being replaced by slower	moving M				
25	(d) Neutralization of						
25.		larography (DPP) is more	e sensitive than D.C. polarog	graphy (DCP). Consider following			
	reasons for it, (A)		· · · DCD	[NET June 2015]			
		ent is less in DPP in comp					
	(B) non-faradic current is more in DPP in comparison to DCP (C) polarogram of DPP is of different shape than that of DCP						
	(C) polarogram of DPP is of different shape than that of DCP Correct reaction(s) is/are						
()			() D 1				
	A and C	(b) B and C	(c) B only	(d) A only that of a 01 M Na SO, solution is $\frac{1}{2}$			
26.	The concentration of	a wigoO ₄ solution navin	g me same ionic strength as	that of a 01 M Na_2SO_4 solution is			
	(a) 0.05 M	$(\mathbf{h}) \cap \mathcal{O}(7)$		[NET Dec. 2015]			
	(a) 0.05 M	(b) 0.067 M	(c) 0.075 M	(d) 0.133 M			
3 RAJ	SI CHEMISTRY POINT,	Gopalpura Flyover, JAIF	PUR visit us @ www.	rajsichemistrypoint.com			

27.	Given that E^0 (Cl ₂ /Cl ⁻) = 1.35 V and K _{sp} (AgCl) = 10 ⁻¹⁰ at 25°C, E^0 corresponding to the	e electrode reaction
	$\frac{1}{2}Cl_2(g) + Ag^+(\text{soln.}) + e^- \to AgCl(s) \text{ is}$	[NET Dec. 2015]
	$\begin{bmatrix} 2.303RT \\ F \end{bmatrix} = 0.06V$	
	$\begin{bmatrix} F \\ (a) 0.75 V \\ (b) 1.05 V \\ (c) 1.65 V \\ (d) 1.95 V \end{bmatrix}$	
28.	The standard EMF of the cell, Pt, H ₂ (g) HCl (soln). AgCl(s), Ag(s) (a) Increases with T (b) decreases with T	[NET Dec. 2015]
	(c) Remains unchanged with T (d) decreases with [HCl]	
29.	The standard electrode potential E^0 at a fixed temperature and in a given medium is depering (a) Only the electrode composition	endent on [NET June 2016]
	(b) The electrode composition and the extent of the reaction	
	(c) The extent of the electrode reaction only(d) The electrode reaction and the electrode composition	
30.	Two aqueous 1:1 electrolyte systems A and B are at different temperature T_A and	
	concentrations, respectively. Their Debye lengths will be equal if, (a) $T_A = 2T_B$ and $C_A = 2C_B$ (b) $T_A = 2T_B$ and $C_A = C_B / 2$	[NET June 2016]
	(c) $T_A = \sqrt{2}T_B$ and $C_A = 2C_B$ (d) $T_A = 2T_B$ and $C_A = \sqrt{2}C_B$	
31.	In a potentiometric titration, the end point is characterized by	[NET June 2016]
	(a) $\frac{dE}{dV} = 0, \frac{d^2E}{dV^2} = 0$ (b) $\frac{dE}{dV} \neq 0, \frac{d^2E}{dV^2} = 0$	
	(a) $\frac{dE}{dV} = 0, \frac{d^2E}{dV^2} = 0$ (b) $\frac{dE}{dV} \neq 0, \frac{d^2E}{dV^2} = 0$ (c) $\frac{dE}{dV} = 0, \frac{d^2E}{dV^2} \neq 0$ (d) $\frac{dE}{dV} \neq 0, \frac{d^2E}{dV^2} \neq 0$	
32.	Aqueous solutions of NaCl, CaCl ₂ and LaCl ₃ show the following plots of logarithms of coefficient (ln γ_{\pm}) vs root of molar concentration (c)	[mean ionic activity [NET June 2016]
	0	
	B	
	-1 0 \sqrt{c} 0.01	
	The correct option is then NaCl CaCl ₂ LaCl ₃	
	$\begin{array}{cccc} NaCl & CaCl_2 & LaCl_3 \\ (a) & C & B & A \end{array}$	
	(b)ABC(c)ACB	
33.	On titrating conductometrically a NaOH solution with a mixture of HCl and CH ₃ CO ₂ H volume of mixed acid added (b) in y-axis against the conductance (a) in x-axis is expect	-
		[NET June 2016]
		\langle
	(a) (b) (c) (d) (d)	

41.	(d) P-III, Q-IV, R-I, S-VI A substance undergoes a two electron reversible reduction at dropping mercury electrode, and gives a						
	diffusion current of 7.5 μ A. Wh 1.5 mA. The E _{1/2} (in volt) will 1 (a) -0.683 (b) -0.		.615V, the current is [GATE 2005]				
42.		tion taking place under standard condition at 298K and 1	atm in a Daniel cell, [GATE 2005]				
	(A) Equal to ∆H°(c) equal to zero	(b) equal to $T\Delta S^{\circ}$ (d) equal to ΔU°					
43.		 l limiting law, the mean activity coefficient of 5 × 10 le Debye-Huckel constant 'A' can be taken to be 0.509) (b) 0.72 	⁻⁴ mol kg ⁻¹ aqueous [GATE 2008]				
	(c) 0.80	(d) 0.91	-				
44.	For a 1 molal aqueous NaCl Limiting Law constant (A) are (A) $\log \gamma_{\pm} = \sqrt{2}A$	solution, the mean ionic activity coefficient (γ_{\pm}) and related as (B) $\log \gamma_{\pm} = -\sqrt{2}A$	the Debye–Hückel [GATE 2011]				
	(C) $\gamma_{+} = 10^{A}$	(D) $\gamma_{\pm} = 10^{-A}$					
45.	At 298 K, the EMF of the cell		[GATE 2012]				
	Pt $ H_2(1bar) H^+$ (solution) $ Cl^- $	Hg ₂ Cl ₂ Hg	t j				
	-	tial of the calomel electrode is 0.2802 V. If the liquid	junction potential is				
	zero, the pH of the solution is (A) 4.7 (B) 7.4	4 (C) 8.0 (D) 12.7					
State	ement for Linked Answer Questi						
46.		ty product (K_{SP}) of Fe(OH) ₃ , the appropriate cell representation	ation and its emf are,				
	respectively.		[GATE 2013]				
	(A) $<$ Fe Fe (OH) ₃ (s) OH ⁻ (aq) Fe ³⁺ (aq) Fe						
	(B) $<$ Fe Fe ³⁺ (aq) OH ⁻ (aq) Fe(OH) ₃ (s) Fe >, -0.750 V (C) $<$ Fe Fe (OH) ₃ (s) OH ⁻ (aq) Fe ³⁺ (aq) Fe >, +0.750 V						
	(D) $<$ Fe Fe ³⁺ (aq) OH ⁻ (aq) Fe						
47.	The value of $\log_{e}(K_{SP})$ for Fe(OI		[GATE 2013]				
40	(A) -38.2 (B) +87.6	(C) -96.0 (D) -87.6	Its natantial is found				
48.	A platinum electrode is immersed in a solution containing 0.1 M Fe^{2+} and 0.1 M Fe^{3+} . Its potential is found to be 0.77V against SHE. Under standard conditions and considering activity coefficients to be equal to						
		rode, when the concentration of Fe^{3+} is increased to 1 M,					
			[GATE 2014]				
49.	Given the E^0 values for the foll		[GATE 2015]				
	$Mn^{6+} \xrightarrow{1.28V} Mn^{5+} \xrightarrow{2.9V}$						
	$\xrightarrow{0.96V} Mn^{3+} \xrightarrow{1.5V} M$						
	the compound value of E^0 for N	$Mn^{6+} \rightarrow Mn^{2+}$ (in volts) is					
50.	The mean ionic activity coeff	icient of 0.001 molal 7nSO. (ag) at 208 K according t	o the Debye-Huckel				
20.	The mean ionic activity coefficient of 0.001 molal ZnSO_4 (aq) at 298 K according to the Debye-Huckel limiting law is (Debye Huckel constant is 0.509 molal ⁻¹) [GATE 2015]						
51.	The mobility of a univalent	ion in aqueous solution is $6.00 (10^{-2} \text{ m}^2 \text{ s}^{-1}) \text{ V}^{-1}$ at 3	800 K. Its diffusion				
~~		$m^2 s^{-1}$. The value of X is (up two decimal places)					
52.	The ionic activity coefficients of CaF_2 is (up to two dec	of Ca^{2+} and F^- are 0.72 and 0.28, respectively. The mean imal places)	n activity coefficient E 2017]				
			_				
6 🛛 R/	JSI CHEMISTRY POINT, Gopalpur	a Flyover, JAIPUR visit us @ www.rajsichemistr	vpoint.com				

- 2018
- 53. The diffusion limiting current (I_d) at a dropping mercury electrode for an aqueous Mg(II) solution of concentration'c'($molL^{-1}$) is (up to two decimal places). [GATE 2017] The standard Gibbs free energy change of the reaction shown below is -2.7 kJ mol^{-1} 54. $Sn(s) + Pb^{2+} = Sn^{2+} + Pb(s)$, Given that $E^{\circ}(Pb^{2+}/Pb)$ is -0.126 V, the value of $E^{0}(Sn^{2+}/Sn)$ in V is _____ (up to two decimal places) [GATE 2017] 1. 21. 41. 61. 81. 2. 22. 42. **62**. 82. 3. 23. 43. 63. 83. 24. 4. 44. **64**. 84. 85. 5. 25. 45. 65. 26. 46. **66.** 86. 6. 7. 27. 47. 67. 87. 8. 28. **48.** 88. 68. 9. 29. 49. 89. **69**. 10. 30. 50. 70. 90. 11. 31. 51. 71. 91. 12. 32. 52. 72. 92. 33. 73. 93. 13. 53. 34. 74. 94. 14. 54. 15. 35. 95. 55. 75. 76. 96. 16. 36. 56. 17. 37. 57. 77. 97. <u>58.</u> 38. 78. 98. 18. 19. 39. 59. 79. 99. 60. 80. 20. 100. 40.

